Invariant Manifolds of Complex Systems

نویسندگان

  • Jean-Marc Ginoux
  • Bruno Rossetto
  • Cyrille Bertelle
  • Gérard H.E. Duchamp
  • Hakima Kadri-Dahmani
چکیده

The aim of this work is to establish the existence of invariant manifolds in complex systems. Considering trajectory curves integral of multiple time scales dynamical systems of dimension two and three (predator-prey models, neuronal bursting models) it is shown that there exists in the phase space a curve (resp. a surface) which is invariant with respect to the flow of such systems. These invariant manifolds are playing a very important role in the stability of complex systems in the sense that they are ”restoring” the determinism of trajectory curves. 1 Dynamical systems In the following we consider a system of ordinary differential equations defined in a compact E included in d ~ X dt = ~ I (

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical cosymplectic manifolds and their submanifolds

    In ‎this ‎paper‎, we introduce statistical cosymplectic manifolds and investigate some properties of their tensors. We define invariant and anti-invariant submanifolds and study invariant submanifolds with normal and tangent structure vector fields. We prove that an invariant submanifold of a statistical cosymplectic manifold with tangent structure vector field is a cosymplectic and minimal...

متن کامل

Ricci tensor for $GCR$-lightlike submanifolds of indefinite Kaehler manifolds

We obtain the expression of Ricci tensor for a $GCR$-lightlikesubmanifold of indefinite complex space form and discuss itsproperties on a totally geodesic $GCR$-lightlike submanifold of anindefinite complex space form. Moreover, we have proved that everyproper totally umbilical $GCR$-lightlike submanifold of anindefinite Kaehler manifold is a totally geodesic $GCR$-lightlikesubmanifold.

متن کامل

The Dynamics of Weakly Reversible Population Processes near Facets

This paper concerns the dynamical behavior of weakly reversible, deterministically modeled population processes near the facets (codimension-one faces) of their invariant manifolds and proves that the facets of such systems are “repelling.” It has been conjectured that any population process whose network graph is weakly reversible (has strongly connected components) is persistent. We prove thi...

متن کامل

Invariant Manifolds for Stochastic Partial Differential Equations

Invariant manifolds provide the geometric structures for describing and understanding dynamics of nonlinear systems. The theory of invariant manifolds for both finite and infinite dimensional autonomous deterministic systems, and for stochastic ordinary differential equations is relatively mature. In this paper, we present a unified theory of invariant manifolds for infinite dimensional random ...

متن کامل

Invariant manifolds and global bifurcations.

Invariant manifolds are key objects in describing how trajectories partition the phase spaces of a dynamical system. Examples include stable, unstable, and center manifolds of equilibria and periodic orbits, quasiperiodic invariant tori, and slow manifolds of systems with multiple timescales. Changes in these objects and their intersections with variation of system parameters give rise to globa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006